top of page

Analysis-and-Design-of-Multi-Storey-Residential-Building-using-STAAD.Pro_

maxresdefault

Analysis-and-Design-of-Multi-Storey-Residential-Building-using-STAAD.Pro_
1/2
WORKING WITH STAAD. Pro
Input Generation: The GUI (or user) communicates with the STAAD analysis engine through the STD input file. That input file is a text file consisting of a series of commands which are executed sequentially. The commands contain either instructions or data pertaining to analysis and/or design. The STAAD input file can be created through a text editor or the GUI Modeling facility. In general, any text editor may be utilized to edit/create the STD input file. The GUI Modeling facility creates the input file through an interactive menu-driven graphics oriented procedure. STAAD input file
Types of Structures: A STRUCTURE can be defined as an assemblage of elements. STAAD is capable of analyzing and designing structures consisting of frame, plate/shell and solid elements. Almost any type of structure can be analyzed by STAAD. A SPACE structure, which is a three dimensional framed structure with loads applied in any plane, is the most general. A PLANE structure is bound by a global X-Y coordinate system with loads in the same plane. A TRUSS structure consists of truss members which can have only axial member forces and no bending in the members. 11 A FLOOR structure is a two or three dimensional structure having no horizontal (global X or Z) movement of the structure [FX, FZ & MY are restrained at every joint]. The floor framing (in global X-Z plane) of a building is an ideal example of a FLOOR structure. Columns can also be modeled with the floor in a FLOOR structure as long as the structure has no horizontal loading. If there is any horizontal load, it must be analyzed as a SPACE structure.
Generation of the structure: The structure may be generated from the input file or mentioning the co-ordinates in the GUI. The figure below shows the GUI generation method. generation of structure through GUI.
Material Constants: The material constants are: modulus of elasticity (E); weight density (DEN); Poisson's ratio (POISS); co-efficient of thermal expansion (ALPHA), Composite Damping Ratio, and beta 12 angle (BETA) or coordinates for any reference (REF) point. E value for members must be provided or the analysis will not be performed. Weight density (DEN) is used only when self weight of the structure is to be taken into account. Poisson's ratio (POISS) is used to calculate the shear modulus (commonly known as G) by the formula, G = 0.5 x E/ (1 + POISS) If Poisson's ratio is not provided, STAAD will assume a value for this quantity based on the value of E. Coefficient of thermal expansion (ALPHA) is used to calculate the expansion of the members if temperature loads are applied. The temperature unit for temperature load and ALPHA has to be the same.
Supports: Supports are specified as PINNED, FIXED, or FIXED with different releases (known as FIXED BUT). A pinned support has restraints against all translational movement and none against rotational movement. In other words, a pinned support will have reactions for all forces but will resist no moments. A fixed support has restraints against all directions of movement. Translational and rotational springs can also be specified. The springs are represented in terms of their spring constants. A translational spring constant is defined as the force to displace a support joint one length unit in the specified global direction. Similarly, a rotational spring constant is defined as the force to rotate the support joint one degree around the specified global direction.
Loads: Loads in a structure can be specified as joint load, member load, temperature load and fixedend member load. STAAD can also generate the self-weight of the structure and use it as uniformly distributed member loads in analysis. Any fraction of this self weight can also be applied in any desired direction. Joint loads: Joint loads, both forces and moments, may be applied to any free joint of a structure. These loads act in the global coordinate system of the structure. Positive forces act in the positive coordinate directions. Any number of loads may be applied on a single joint, in which case the loads will be additive on that joint.
Member load: Three types of member loads may be applied directly to a member of a structure. These loads are uniformly distributed loads, concentrated loads, and linearly varying loads (including trapezoidal). Uniform loads act on the full or partial length of a member. Concentrated loads act at any intermediate, specified point. Linearly varying loads act over the full length of a member. Trapezoidal linearly varying loads act over the full or partial length of a member. Trapezoidal loads are converted into a uniform load and several concentrated loads. Any number of loads may be specified to act upon a member in any independent loading condition. Member loads can be specified in the member coordinate system or the global coordinate system. Uniformly distributed member loads provided in the global coordinate system may be specified to act along the full or projected member length.
Member load configuration Area/floor load: Many times a floor (bound by X-Z plane) is subjected to a uniformly distributed load. It could require a lot of work to calculate the member load for individual members in that floor. However, with the AREA or FLOOR LOAD command, the user can specify the area loads (unit load per unit square area) for members. The program will calculate the tributary area for 14 these members and provide the proper member loads. The Area Load is used for one way distributions and the Floor Load is used for two way distributions.
Fixed end member load: Load effects on a member may also be specified in terms of its fixed end loads. These loads are given in terms of the member coordinate system and the directions are opposite to the actual load on the member. Each end of a member can have six forces: axial; shear y; shear z; torsion; moment y, and moment z.
Load Generator – Moving load, Wind & Seismic: Load generation is the process of taking a load causing unit such as wind pressure, ground movement or a truck on a bridge, and converting it to a form such as member load or a joint load which can be then be used in the analysis.
Moving Load Generator: This feature enables the user to generate moving loads on members of a structure. Moving load system(s) consisting of concentrated loads at fixed specified distances in both directions on a plane can be defined by the user. A user specified number of primary load cases will be subsequently generated by the program and taken into consideration in analysis.
Seismic Load Generator: The STAAD seismic load generator follows the procedure of equivalent lateral load analysis. It is assumed that the lateral loads will be exerted in X and Z directions and Y will be the direction of the gravity loads. Thus, for a building model, Y axis will be perpendicular to the floors and point upward (all Y joint coordinates positive). For load generation per the codes, the user is required to provide seismic zone coefficients, importance factors, and soil characteristic parameters. Instead of using the approximate code based formulas to estimate the building period in a certain direction, the program calculates the period using Raleigh quotient technique. This period is then utilized to calculate seismic coefficient C. After the base shear is calculated from the appropriate equation, it is distributed among the various levels and roof per the specifications. The distributed base shears are subsequently applied as lateral loads on the structure. These loads may then be utilized as normal load cases for analysis and design.
Wind Load Generator: The STAAD Wind Load generator is capable of calculating wind loads on joints of a structure from user specified wind intensities and exposure factors. Different wind intensities may be specified for different height zones of the structure. Openings in the structure may be modeled using exposure factors. An exposure factor is associated with each joint of the structure and is defined as the fraction of the influence area on which the wind load acts. Built-in algorithms automatically calculate the exposed area based on the areas bounded by members (plates and solids are not considered), then calculates the wind loads from the intensity and exposure input and distributes the loads as lateral joint loads.
Section Types for Concrete Design: The following types of cross sections for concrete members can be designed. For Beams Prismatic (Rectangular & Square) & T-shape For Columns Prismatic (Rectangular, Square and Circular)
Design Parameters: The program contains a number of parameters that are needed to perform design as per IS 13920. It accepts all parameters that are needed to perform design as per IS: 456. Over and above it has some other parameters that are required only when designed is performed as per IS: 13920. Default parameter values have been selected such that they are frequently used numbers for conventional design requirements. These values may be changed to suit the particular design being performed by this manual contains a complete list of the available parameters and their default values. It is necessary to declare length and force units as Millimeter and Newton before performing the concrete design.
Beam Design: Beams are designed for flexure, shear and torsion. If required the effect of the axial force may be taken into consideration. For all these forces, all active beam loadings are prescanned to identify the critical load cases at different sections of the beams. For design to be performed as per IS: 13920 the width of the member shall not be less than 200mm. Also the member shall preferably have a width-to depth ratio of more than 0.3. 16 Design for Flexure: Design procedure is same as that for IS 456. However while designing following criteria are satisfied as per IS-13920: 1. The minimum grade of concrete shall preferably be M20. 2. Steel reinforcements of grade Fe415 or less only shall be used. 3. The minimum tension steel ratio on any face, at any section, is given by: ρmin = 0.24√fck/fy The maximum steel ratio on any face, at any section, is given by ρmax = 0.025 4. The positive steel ratio at a joint face must be at least equal to half the negative steel at that face. 5. The steel provided at each of the top and bottom face, at any section, shall at least be equal to one-fourth of the maximum negative moment steel provided at the face of either joint.
Design for Shear: The shear force to be resisted by vertical hoops is guided by the IS 13920:1993 revision. Elastic sagging and hogging moments of resistance of the beam section at ends are considered while calculating shear force. Plastic sagging and hogging moments of resistance can also be considered for shear design if PLASTIC parameter is mentioned in the input file. Shear reinforcement is calculated to resist both shear forces and torsional moments.
Column Design: Columns are designed for axial forces and biaxial moments per IS 456:2000. Columns are also designed for shear forces. All major criteria for selecting longitudinal and transverse reinforcement as stipulated by IS: 456 have been taken care of in the column design of STAAD. However following clauses have been satisfied to incorporate provisions of IS 13920: 1 The minimum grade of concrete shall preferably be M20 . Steel reinforcements of grade Fe415 or less only shall be used.The minimum dimension of column member shall not be less than 200 mm. For columns having unsupported length exceeding 4m, the shortest dimension of column shall not be less than 300 mm. The ratio of the shortest cross-sectional dimension to the perpendicular dimension shall preferably be not less than 0. 17 .The spacing of hoops shall not exceed half the least lateral dimension of the column, except where special confining reinforcement is provided. Special confining reinforcement shall be provided over a length lo from each joint face, towards mid span, and on either side of any section, where flexural yielding may occur. The length lo shall not be less than a) larger lateral dimension of the member at the section where yielding occurs, b) 1/6 of clear span of the member, and c) 450 mm. The spacing of hoops used as special confining reinforcement shall not exceed ¼ of minimum member dimension but need not be less than 75 mm nor more than 100 mm.
bottom of page